

Derek Griffith, Hailey Hein, Haoran Li, Yanbo Wang

July 31, 2025

Engineering 224

Project Description

Department of Mechanical Engineering

- NAU Baja SAE Capstone
- NAU Formula SAE Capstone
- Professor David Willy

Why?

- Yearly SAE collegiate competitions
- Ongoing need for mobile tools and equipment at competition
- Incremental increase from current wagon storage

Figure 1: 2025 Baja SAE Pit Setup

Figure 2: Benchmark/Projected End Goal

Design Description

Frame Sub-Assembly

- 1"x2" Steel base tubing
- ^ This portion was sponsored
- 1"x1" Steel upwards tubing
- 0.125" (1/8") Thick
- 60" L x 30" W x 29" H
- Braces where needed
- Reinforced steering mount
- Mig welded

Figure 4: Frame Model View

Steering Sub-Assembly

- 8" eye-to-eye tie-rods
- 35" Long steel tube handle
- Brake lever attached to 10" wide handle
- Separate hubs with axle stub
- ID Bearings in the wheels
- 3/4" Through hardware

Tire Carrier Sub-Assembly

- 6061-T6 1/4" Thick aluminum
- 27" long, 21.5" wide
- Holds 4 full size tires (Max 21")
- Opportunity for center bungee strap
- Easy access loading/unloading
- Lightweight minimalized design

Figure 6: Tire Carrier Model View [10]

Storage Sub-Assembly

- 2 Cabinets left/right of toolbox
- 1 large double door cabinet behind toolbox
- Shelves halfway of 2
- Toolbox drawer storage with foam inserts
- Flush locking door handles
- Hinged aluminum doors

Figure 7: Cabinet Model View

Added Brake Calculation

Braking Force from Kinetic Energy: [18]

$$F_b = \frac{1}{2} \frac{(227)(2)^2}{3} = 151.33 \text{ N} \approx 34 \text{ lbf}$$
 (1)

Force Balance:

$$F_{b1} * r_1 = F_{b2} * r_2 \Rightarrow F_b \approx 43 \text{ lbf}$$
 (2)

Spring Rate:

$$k = \frac{d^4G}{8D^3N} = \frac{\left(\frac{1}{8}in\right)^4 (11.5*10^6 \text{ psi})}{8\left(\frac{7}{8}in\right)^3 (13)} = 40.3 \text{ lb/in}$$
 (3)

Brake Fluid Pressure:

$$P = \frac{F}{A} = \frac{6(30.225 \text{ lbf})}{\frac{\pi}{4}(0.4 \text{ in})^2} = 1443.14 \text{ psi}$$
 (4)

Final Breaking Force:

$$F_b = 1443.14(1)^2(.2384) = 344.1 lbf$$

Figure 9: Miller Custom Fab Cart Brakes [11]

Inverter Calculation

Figure 10: Power Smart Inverter Generator [8]

Power Supply Selection

- 1. 2500 W Inverter Generator
- 2. 120 V Power Strip
- 3. 25 ft Extension Cord

Usage Assumptions

- 1. Power tool battery chargers
- 2. Phone chargers
- 3. Other small electronics (lights, radios)

Inverter Calculation

Usage Duration:

Baja race operation time: 4 hours

Total Energy Consumption:

$$E = P*t = 250W \times 4h = 1000Wh$$
 (5)

Generator Capacity Check:

- Inverter generator rated output: 2500W
- Actual system load: 250W
- Load Ratio = $\frac{250W}{2500W}$ = 10%

Table 1: Summarized Power Calculations

Device	Power (W)	Qty	Total Power (W)
Power tool chargers	90W	2	180W
Phone chargers	10W	2	20W
Auxiliary lightings/tools	50W	1	50W
Total Load			250W

Power Calculation Comparison

Previous Calculations:

- Meeting a 4-hour charge supply would require a 12V 185.4Ah battery
- This battery is not readily available in practice.
- We would need to connect 2 12V 100Ah batteries in parallel, significantly increasing our cost.

We chose to use a 2500W inverter generator. This decision reduces our overall cost and provides sufficient and reliable power for our needs.

Storage Volume Calculation

Required Parts for Storage

Gear bag:

$$3'x2'x1'=10,368 \text{ in}^3$$

At least 2 helmets:

$$(10"x10"x12")*2 = 2400 in^3$$

Required Storage Volume: (6)

$$= 12,768 \text{ in}^3 = 7.4 \text{ ft}^3$$

Upper Cabinets: (7)

(19.9" $\times 16$ " $\times 29$ ")*2= 18,467 in³

Rear Cabinet:

26.9" $\times 27.8$ " $\times 17$ "= 12,713 in³

Toolbox:

26" $\times 24.4$ " $\times 13$ "= 8,247 in³

Rough Total Storage Volume: (8)

$$39,427 \text{ in}^3 = 23 \text{ ft}^3$$

Calculation Summary

Table 2: Summarized Calculations to Date

Subsystem	Initial Values	Intermediate Values to Date		Improvement?	Customer Need Met
Brakes	3200 <i>lbf</i>	34 <i>lbf</i>	344.1 lbf	Yes	Safety and Achievability
Frame	Critical tipping angle: 27.35°	Critical tipping angle: 43.15°	7500 in/lbf bending moment	Yes	Stability
Casters	9 N	2.0232 <i>lbf</i>	-	No	Different Terrain
Steering	-	2.46 <i>lbf</i>	31.3" Radius	Yes	Maneuverability
Power Supply	-	46.4 <i>Ah</i>	2500 W	Yes	Power supply
Storage Volume	-	-	23 ft ³	N/A	Storing required equipment

Design Validations

Table 3: SAE Toolbox FMEA Analysis [7]

Failure Mode	Cause / Effect	Mitigation Strategy
Steering System Failure	Tie rod bending, fastener loosening, handle deformation → Loss of control	SolidWorks motion study validated geometry; reinforced mounts; rod-end bearings tested
Tire Mount/Carrier Failure	Bolt shear or fatigue cracking in aluminum → Tire loss	FEA simulates ~40 lb load w/ vibration; steel or gusseted aluminum considered
Frame Cracking/Weld Failure	Dynamic loads over rough terrain → Structural collapse	Welded steel tubing with cross-bracing under heavy load zones
Drawer Latch Failure	Latches open during motion → Tool ejection, shifting load	Locking latches designed for vibration, similar to Redline unit
Brake System Fatigue	Spring or lever failure → Inability to hold on slopes	Bike brake-style locking lever w/ fatigue-tested springs and cables

Risk Trade-Off Analysis

Strength vs. Weight:

- •Steel for structural areas (frame, supports) ensures durability
- •Aluminum for non-structural elements (side panels, tire mount) reduces weight

Cost vs. Reliability:

- •COTS (Commercial off the Shelf) components used wherever possible to reduce fabrication time and cost
- •All design decisions aimed to stay within \$2000 budget without compromising function

Testing Procedures

Table 4: ME 486C Tentative Testing

Testing Procedure	Engineering Requirement Met	Equipment Needed	Testing location
Brake application	Safety, fast brake response	Completed cart	Inclined parking lot outside of 98C
Power Supply	Tool charging, supplied power	Inverter generator, gas	NAU Machine shop 98C
Turning Radius	Able to maneuver swiftly/easily	Completed cart, SAE enclosed trailer	NAU Machine shop 98C
Weight capacity	Able to withstand loads	Various heavy objects	NAU Machine shop 98C
Equipment fitment	Able to store tools, tires, driver suits/helmets	Completed cart, driver equipment, tools, tires	NAU Machine shop 98C
Correct tools	SAE teams can go through tech with the provided tools	Tools and toolbox	NAU Machine shop 98C

Schedule

Figure 11: ME 486C Tentative Schedule

Fundraising

- GOLD
- \$501-\$1000

- Proposals sent to 67 total companies
- Tier system for logo size/placement
- In-kind parts sponsorships
- Monetary sponsorships
- \$1,651/1000 Raised

SILVER \$201-\$500

COPPER \$50-\$200

Figure 12: SAE Toolbox Sponsorship Tier

Budget

Anticipated Expense Ranges:

- Toolbox (\$125-350)
- Tools (\$130-250)
- Casters (\$50-200/4)
- Brakes (\$60-150)
- Power Supply (\$320-500)
- Frame Steel (\$50/6ft)
- Shade (\$120-250)
- Aluminum Panels (\$15/12x24in)

Actual expenses:

- Toolbox + Tools (\$250)
- Vice + Extinguisher (\$54)
- Casters + Frame + Steering (\$0)
- Inverter Power Supply (\$320)
- Pull out shade (\$90)
- Aluminum panels (\$120)
- Steel square tubing (\$200)
- Brakes (\$100)

Resulting Balance:

\$ = \$1,387

Thank You

Questions?

Prototype 2

Subsystem Checklist

Table 1: Modeling Check and Requirements

Subsystem	Physical	Virtual	Client/ER Requirement
Brakes	-		Needs to brake quickly and safely
Steering		-	Needs to be able to be driven by one person
Toolbox/Cabinets	-	-	Needs to store required tools/equipment/extras
Casters		-	Needs to have a minimum of 8" casters for terrain
Power System		-	Needs to power battery chargers/phones/extras
Base Frame		-	Needs to be durable and as small as possible for trailer storage
Tire Storage	-	-	Needs to carry both Baja and Formula sized tires

Physical Prototype

Scaled (1:6.5) Tool cart outer shell and cabinets

Model Size: L=9.23", W=4.62", H=4.92"

Final Design: L=60", W=30", H=32"

Question

Figure 1: 1:6.5 Model Representation

- 1. What is the volume of the cabinets
- 2. Where can we put things on the outside for the best function (fire extinguisher, vice, shade, tires)

Prototype Images

Figures 2 & 3: Views of prototype

Prototype Volume Calculations

Prototype Measurements:

- Length = 9.23 in
- Width = 4.62 *in*
- Height = 4.93 *in*

Full Scale Measurements:

- Length = 60 in
- Width = 30 *in*
- Height = 32 *in*

Model Cabinet Volume Calculation: (1)

$$V = (39,427 \text{ in}^3/6.5) = 6,065 \text{ } in^3$$
$$= 3.5 \text{ } ft^3$$

Full Scale Total Storage Volume:

$$= 39,427 \text{ in}^3 = 23 ft^3$$

Answer

- The calculated volume of the prototype cabinet is 3.5 ft^3
- We will place frequently accessed tools on the outside, such as the fire extinguisher on the rear, the vice on the front left side, and shade/tires on top for easy access and balance.

Informed Design

This design considers space constraints and optimizes component layout for functionality, accessibility, and compactness.

Virtual Prototype

- Model of the spare tire carrier
- Best material for flexing/weight
- Fits both Baja and Formula tires
- Need a modeled baseline before a physical prototype can be constructed for budgeting

Figure 4: CTW Next Gen Tire Cart Benchmark [10]

Questions

What are we trying to answer?

- Should the tire carrier be additional (attached outward) of the tool cart or integrated (removing cabinet)?
- How much cabinetry is lost if integrated?
- Will 6061 Aluminum be a sufficient material to hold the weight of the tires without flexing and cracking?
- Will a steel tubing/plate holder be more reliable for longevity?
- What design idea should we choose overall?

21" = OD, 6.5" = W, 13" = Rim Size

Figure 5: Largest Tire of Baja and Formula

Initial CAD Design Ideas

Figure 6: Rear Exterior Mount

Figure 7: Tabletop Exterior Mount

Figure 8: Rear Integrated Mount

Design Option Weighing

Table 2: Three Tire Carrier Comparisons

Option	Pros	Cons
Rear Exterior Mount	Saves tabletop workspaceSaves cabinet spaceSecures tires on center post	 Adds extended length to the overall footprint Need steel base for strength/bending
Tabletop Exterior Mount	 Saves cabinet space Doesn't add overall length Fits within the width of the cart Minimal/lightweight material 	 Takes away tabletop workspace Raises center of gravity
Rear Integrated Mount	 Doesn't add overall length/height Secures tires on center post Reduces weight from cutting out tubes 	 Takes away cabinet space Takes away tabletop workspace

FEA Analysis

- 6061-T6 Aluminum "Tub"
- Each tire weighs (high side)
 25lbs
- = 444.8 N on all faces they touch
- FEA Force analysis showed 0.0332 in displacement for the whole model

Figure 9: FEA Force Analysis on "Tub" Holder [5]

Answer

The aluminum top mounted tub carrier is sufficient for both Baja and Formula tire sizes and will be strong enough for the application.

Informing the Design

This design allows for easy access, less total cart length and complete range of cabinet storage.

Figure 10: Up-to-Date CAD Assembly

References

- [1] R. G. Budynas and J. K. Nisbett, *Shigley's Mechanical Engineering Design*, 11th ed. New York, NY, USA: McGraw-Hill, 2020.
- [2] E. Oberg, F. D. Jones, H. L. Horton, and H. H. Ryffel, *Machinery's Handbook*, 30th ed. New York, NY, USA: Industrial Press, 2016.
- [3] Engineering Toolbox, "Engineering resources for mechanical design," [Online]. Available: https://www.engineeringtoolbox.com. [Accessed: 31-Jul-2025].
- [4] Dassault Systèmes, *SOLIDWORKS Simulation 2024*, Waltham, MA, USA. [Software].
- [5] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, *Concepts and Applications of Finite Element Analysis*, 4th ed. Hoboken, NJ, USA: Wiley, 2002.
- [6] Automotive Industry Action Group (AIAG), *FMEA Handbook*, 4th ed. Southfield, MI, USA: AIAG, 2008.
- [7] D. H. Stamatis, *Failure Mode and Effect Analysis: FMEA from Theory to Execution*, 2nd ed. Milwaukee, WI, USA: ASQ Quality Press, 2003.
- [8] PowerSmart, *2500W Inverter Generator User Manual*, PowerSmart USA, 2024. [Online]. Available: https://powersmartusa.com. [Accessed: 31-Jul-2025].
- [9] National Fire Protection Association (NFPA), *National Electrical Code (NEC) Handbook*, 2023 ed., Quincy, MA, USA: NFPA, 2023.
- [10] Circle Track Warehouse, "Next Gen Tire Cart," [Online]. Available: https://www.circletrackwarehouse.com/product/next-gen-tire-cart/. [Accessed: 31-Jul-2025].
- [11] Miller Custom Fabrication, "Brake Line Kit," product description, Miller Fabrication store, Monroe, NC, USA. Available: https://www.millercustomfabrication.com/store/p/brake-line-kit [Accessed: 31-Jul-2025].
- [12] Redline Engineering, "Flush latches and tool cart hardware," [Online]. Available: https://www.redlinestands.com. [Accessed: 31-Jul-2025].
- [13] McMaster-Carr, "Engineering and hardware supply," [Online]. Available: https://www.mcmaster.com. [Accessed: 31-Jul-2025].
- [14] ASTM International, *Annual Book of ASTM Standards*, Vol. 03.01, Metals Mechanical Testing; Elevated and Low-Temperature Tests; Metallography. West Conshohocken, PA, USA: ASTM International, 2024.
- [15] Northern Arizona University, *ME 476C Capstone Design Course Guide*, Dept. of Mechanical Engineering, Flagstaff, AZ, USA, 2025.
- [16] D. Willy, "Capstone Project Supervision and Client Requirements," Northern Arizona University, Dept. of Mechanical Engineering, 2025. [Internal communication].
- [17] J. L. Meriam and L. G. Kraige, *Engineering Mechanics: Statics*, 8th ed. Hoboken, NJ, USA: Wiley, 2015.
- [18] W. C. Young and R. G. Budynas, *Roark's Formulas for Stress and Strain*, 8th ed. New York, NY, USA: McGraw-Hill, 2012.
- [19] H. R. Pacejka, *Tire and Vehicle Dynamics*, 3rd ed. Oxford, U.K.: Butterworth-Heinemann, 2012.

Thank You

Questions?